Code: 20ME3402

II B.Tech - II Semester – Regular / Supplementary Examinations MAY 2024

STRENGTH OF MATERIALS (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
		UNIT-I				
1	A s	teel tube of 35mm outer diameter and 30mm	L3	CO2	14 M	
	inner diameter encloses a gunmetal rod of 25mm					
	diameter and is rigidly joined at each end. If at a					
	temperature of 40°C there is no longitudinal					
	stress, determine the stresses developed in the					
	rod and the tube when the temperature of the					
	asse	embly is raised to 240° C.				
	For steel $\alpha_s=11\times10^{-6}$, $E_s=205$ GPa and for gun					
	metal $\alpha_g=18\times10^{-6}$ /°c, $E_g=91.5$ GPa. Also find the					
	increase in length if the original length of the					
	asse	embly is 1m.				
OR						
2	a)	What are the assumptions made in deriving	L1	CO2	4 M	
		the Torsion Equation?				
	b)	Determine the diameter of a solid shaft	L3	CO2	10 M	
		which will transmit 440 kW at 280 rpm. The				
		angle of twist should not exceed one degree				
		per metre length and the maximum torsional				
		shear stress is to be limited to 40 N/mm ² .				
		Assume $G = 84 \text{kN/mm}^2$.				

		UNIT-II				
3	a)	Explain the importance of Shear force and	L2	CO2	4 M	
		Bending Moment diagrams.				
	b)	A cantilever beam of length 2 m carries	L3	CO2	10 M	
		uniformly distributed load of 1.5 kN/m run				
		over the whole length and a point load of				
		2 kN at a distance of 0.5 m from free end.				
		Draw the shear force and bending moment				
		diagrams for the cantilever beam.				
	I	OR		, ,		
4		w the Shear Force and Bending Moment	L3	CO2	14 M	
		gram for a simply supported beam of length				
		and carrying a uniformly distributed load				
	10k	N/m for a distance of 6m from the left end.				
		o calculate the maximum bending moment				
	on t	the section.				
	UNIT-III					
5	a)	What are the assumptions made in deriving	L2	CO ₃	4 M	
	1 \	the flexure formula?	T 4	G0.2	1035	
	b)	An I section shown in Fig. is simply	L4	CO3	10 M	
		supported over a span of 12 m. If the				
		maximum permissible bending stress is				
		80 N/mm ² , what concentrated load can be				
		carried at a distance of 4 m from one				
		support?				
		11.5 mm 100 mm →				
		↑				
		→ 1.5 mm - 7.5 mm				
		225 mm				
		<u>↓</u> 11.5 mm				

	OR					
6	a)	Show that for a rectangular section of the	L2	CO3	7 M	
		maximum shear stress is 1.5 times the				
		average stress.				
	b)	A rectangular beam 100 mm wide and	L4	CO3	7 M	
		250 mm deep is subjected to a maximum				
		shear force of 50 kN. Determine:				
		i) Average shear stress,				
		ii) Maximum shear stress, and				
		iii) Shear stress at a distance of 25 mm				
		above the neutral axis				
	1	UNIT-IV				
7		beam of length 6 m is simply supported at its	L4	CO3	14 M	
		s and carries two point loads of 48 kN and				
		kN at a distance of 1 m and 3 m respectively				
		n the left support. Find				
		Deflection under each load,				
		Maximum deflection, and				
	iii.	The point at which maximum deflection				
	Civ	occurs. ven $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 85 \times 10^6 \text{ mm}^4$.				
	GIV					
8	OR				4 M	
0	a)	Derive an expression for hoop stress in a thin cylinder with ends closed by rigid	L4	CO3	4 IVI	
		flanges and subjected to an internal fluid				
		pressure 'p'. Take the internal diameter and				
		shell thickness of the cylinder to be 'd' and				
		't' respectively.				
	b)	Calculate: (i) The change in diameter	L4	CO3	10 M	
		(ii) The change in length and			10 101	
		(iii) Change in volume of a thin cylindrical				
		shell 100 cm diameter, 1 cm in thick and 5m				
		long when subjected to internal pressure of				
		3 N/mm ² . Take the value of $E=2\times10^5$ N/mm ²				
		and poisons ratio=0.3.				
	1	<u> </u>				

UNIT-V						
9	Derive expressions for major and minor	L4	CO4	14 M		
	principal stresses on an oblique plane, when the					
	body is subjected to direct stresses in two					
	mutually perpendicular directions accompanied					
	by a shear stress.					
	OR					
10	Determine the crippling load for a T-section of	L4	CO4	14 M		
	dimensions 10cm×10cm×2cm and of length 5m					
	when it is used as a strut with both of its ends					
	hinged.					
	Take Young's modulus $E = 2 \times 10^5 \text{ N/mm}^2$.					
	2 cm → 10 cm					