PVP 20

II B.Tech - II Semester - Regular / Supplementary Examinations MAY 2024

STRENGTH OF MATERIALS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	A steel tube of 35 mm outer diameter and 30 mm inner diameter encloses a gunmetal rod of 25 mm diameter and is rigidly joined at each end. If at a temperature of $40^{\circ} \mathrm{C}$ there is no longitudinal stress, determine the stresses developed in the rod and the tube when the temperature of the assembly is raised to $240^{\circ} \mathrm{C}$. For steel $\alpha_{\mathrm{s}}=11 \times 10^{-6} /{ }^{0} \mathrm{c}, \mathrm{E}_{\mathrm{s}}=205 \mathrm{GPa}$ and for gun metal $\alpha_{\mathrm{g}}=18 \times 10^{-6} /{ }^{\circ} \mathrm{c}, \mathrm{E}_{\mathrm{g}}=91.5 \mathrm{GPa}$. Also find the increase in length if the original length of the assembly is 1 m .		L3	CO 2	14 M
OR					
2	a)	What are the assumptions made in deriving the Torsion Equation?	L1	CO 2	4 M
	b)	Determine the diameter of a solid shaft which will transmit 440 kW at 280 rpm . The angle of twist should not exceed one degree per metre length and the maximum torsional shear stress is to be limited to $40 \mathrm{~N} / \mathrm{mm}^{2}$. Assume $\mathrm{G}=84 \mathrm{kN} / \mathrm{mm}^{2}$.	L3	CO 2	10 M

UNIT-II					
3	a)	Explain the importance of Shear force and Bending Moment diagrams.	L2	CO 2	4 M
	b)	A cantilever beam of length 2 m carries uniformly distributed load of $1.5 \mathrm{kN} / \mathrm{m}$ run over the whole length and a point load of 2 kN at a distance of 0.5 m from free end. Draw the shear force and bending moment diagrams for the cantilever beam.	L3	CO 2	10 M
OR					
4		whe Shear Force and Bending Moment gram for a simply supported beam of length and carrying a uniformly distributed load N / m for a distance of 6 m from the left end. o calculate the maximum bending moment the section.	L3	CO2	14 M
UNIT-III					
5	a)	What are the assumptions made in deriving the flexure formula?	L2	CO3	4 M
	b)	An I section shown in Fig. is simply supported over a span of 12 m . If the maximum permissible bending stress is $80 \mathrm{~N} / \mathrm{mm}^{2}$, what concentrated load can be carried at a distance of 4 m from one support?	L4	CO3	10 M

OR					
6	a)Show that for a rectangular section of the maximum shear stress is 1.5 times the average stress.	L2	CO3	7 M	
b)	A rectangular beam 100 mm wide and 250 mm deep is subjected to a maximum shear force of 50 kN. Determine : i) Average shear stress, ii) Maximum shear stress, and iii) Shear stress at a distance of 25 mm above the neutral axis	L4	CO3	7 M	
UNIT-IV					

UNIT-V

9	Derive expressions for major and minor principal stresses on an oblique plane, when the body is subjected to direct stresses in two mutually perpendicular directions accompanied by a shear stress.	L4	CO4	14 M
OR				
10	Determine the crippling load for a T-section of dimensions $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 2 \mathrm{~cm}$ and of length 5 m when it is used as a strut with both of its ends hinged. Take Young's modulus $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	L4	CO4	14 M

